
C if...else Statement

In programming, decision making is used to specify the order in which statements

are executed. In this tutorial, you will learn to write if...else statements to make

decisions in your program.

Table of Contents

if Statement

Example: if Statement

if...else Statement

Example: if...else Statement

if...else Ladder

Example: if...else Ladder

Nested if...else

Example: Nested if...else

C if statement

The syntax of if statement is:

if (testExpression)

{

 // statement(s)

}

How if statement works?

The if statement evaluates the test expression inside the parenthesis.

If the test expression is evaluated to true (nonzero), statement(s) inside the body of

if is executed.

If the test expression is evaluated to false (0), statement(s) inside the body of if

is skipped from execution.

To learn more on when test expression is evaluated to nonzero (true) and 0 (false),

check relational and logical operators.

Example 1: if statement

// Program to display a number if user enters negative number

#include <stdio.h>
int main()
{

 int number;

 printf("Enter an integer: ");

 scanf("%d", &number);

 // Test expression is true if number is less than 0
 if (number < 0)
 {

 printf("You entered %d.\n", number);

 }

 printf("The if statement is easy.");

 return 0;
}

Output 1

Enter an integer: -2

You entered -2.

The if statement is easy.

When user enters -2, the test expression (number < 0) is evaluated to true. Hence, You
entered -2 is displayed on the screen.

Output 2

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

Enter an integer: 5

The if statement is easy.

When user enters 5, the test expression (number < 0) is evaluated to false and the

statement inside the body of if is skipped.

C if...else statement

The if statement may have an optional else block. The syntax of if..else

statement is:

if (testExpression) {

 // statement(s) inside the body of if

}

else {

 // statement(s) inside the body of else

}

How if...else statement works?

If test expression is evaluated to true,

statement(s) inside the body of if statement is executed

statement(s) inside the body of else statement is skipped from execution.

If test expression is evaluated to false,

statement(s) inside the body of else statement is executed

statement(s) inside the body of if statement is skipped.

Example 2: if...else statement

Output

Enter an integer: 7

7 is an odd integer.

When user enters 7, the test expression (number%2 == 0) is evaluated to false.

Hence, the statement inside the body of else statement printf("%d is an odd

integer"); is executed and the statement inside the body of if is skipped.

if...else Ladder (if...else if....else Statement)

// Program to check whether an integer entered by the user is odd or ev

#include <stdio.h>
int main()
{

 int number;
 printf("Enter an integer: ");

 scanf("%d",&number);

 // True if remainder is 0
 if(number%2 == 0)
 printf("%d is an even integer.",number);

 else
 printf("%d is an odd integer.",number);

 return 0;
}

The if...else statement executes two di�erent codes depending upon whether the

test expression is true or false. Sometimes, a choice has to be made from more than 2

possibilities.

The if...else ladder allows you to check for multiple test expressions and execute

di�erent statement(s).

Syntax of nested if...else statement.

if (testExpression1)

{

 // statement(s)

}

else if(testExpression2)

{

 // statement(s)

}

else if (testExpression 3)

{

 // statement(s)

}

.

.

else

{

 // statement(s)

}

Example 3: C if...else Ladder

// Program to relate two integers using =, > or <

#include <stdio.h>
int main()

{

 int number1, number2;
 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 //checks if two integers are equal.
 if(number1 == number2)
 {

 printf("Result: %d = %d",number1,number2);

 }

 //checks if number1 is greater than number2.
l if (b 1 b 2)

 else if (number1 > number2)
 {

 printf("Result: %d > %d", number1, number2);

 }

 // if both test expression is false
 else
 {

 printf("Result: %d < %d",number1, number2);

 }

 return 0;
}

Output

Enter two integers: 12

23

Result: 12 < 23

Nested if...else

It is possible to include if...else statement(s) inside the body of another if...else

statement.

This program below relates two integers using either < , > and = similar like in

if...else ladder example. However, we will use nested if...else statement to solve

this problem.

Example 4: Nested if...else

#include <stdio.h>
int main()
{

 int number1, number2;
 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 if (number1 >= number2)
 {

 if (number1 == number2)
 {

 printf("Result: %d = %d",number1,number2);

 }

 else
 {

 printf("Result: %d > %d", number1, number2);

 }

 }

 else
 {

 printf("Result: %d < %d",number1, number2);

 }

 return 0;
}

If the body of if...else statement has only one statement, you do not need to

use parenthesis { } .

This code

if (a > b) {

 print("Hello");

}

print("Hi");

is equivalent to

if (a > b)

 print("Hello");

print("Hi");

Also Read: C switch statement

https://www.programiz.com/c-programming/c-switch-case-statement

C Programming for Loop

Loops are used in programming to repeat a specific block of code. After reading this

tutorial, you will learn to create for loop in C programming.

Table of Contents

What is loop?

for loop (and it's syntax)

How for loop works?

for Loop �owchart

Example: for loop

Loops are used in programming to repeat a block of code until a speci�c condition is

met. There are three loops in C programming:

1. for loop

2. while loop

3. do...while loop

for Loop

 The syntax of for loop is:

for (initializationStatement; testExpression; updateStatement)
{
 // codes
}

How for loop works?

The initialization statement is executed only once.

Then, the test expression is evaluated. If the test expression is false (0), for loop is

terminated. But if the test expression is true (nonzero), codes inside the body of for
loop is executed and the update expression is updated.

https://www.programiz.com/c-programming/c-do-while-loops
https://www.programiz.com/c-programming/c-do-while-loops

This process repeats until the test expression is false.

The for loop is commonly used when the number of iterations is known.

To learn more on test expression (when test expression is evaluated to nonzero (true)

and 0 (false)), check out relational and logical operators.

for loop Flowchart

Example: for loop

// Program to calculate the sum of first n natural numbers
// Positive integers 1,2,3...n are known as natural numbers

#include <stdio.h>
int main()
{
 int num, count, sum = 0;

 printf("Enter a positive integer: ");
 scanf("%d", &num);

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

 // for loop terminates when n is less than count
 for(count = 1; count <= num; ++count)
 {
 sum += count;
 }

 printf("Sum = %d", sum);

 return 0;
}

Output

Enter a positive integer: 10
Sum = 55

The value entered by the user is stored in variable num . Suppose, the user entered 10.

The count is initialized to 1 and the test expression is evaluated. Since, the test

expression count <= num (1 less than or equal to 10) is true, the body of for loop is

executed and the value of sum will equal to 1.

Then, the update statement ++count is executed and count will equal to 2. Again, the

test expression is evaluated. Since, 2 is also less than 10, the test expression is

evaluated to true and the body of for loop is executed. Now, the sum will equal 3.

This process goes on and the sum is calculated until the count reaches 11.

When the count is 11, the test expression is evaluated to 0 (false) as 11 is not less

than or equal to 10. Therefore, the loop terminates and next, the total sum is printed.

C Programming while and do...while Loop

Loops are used in programming to repeat a specific block of code. After reading this

tutorial, you will learn how to create while and do...while loop in C programming.

Table of Contents

What is loop?

while Loop

How while loop works?

Flowchart of while loop

Example: while loop

do...while Loop

How do...while loop works?

Flowchart of do...while loop

Example: do...while loop

Loops are used in programming to repeat a block until a speci�c condition is met. There

are three loops in C programming:

1. for loop

2. while loop

3. do...while loop

while loop

The syntax of a while loop is:

while (testExpression)
{
 //codes
}

How while loop works?

https://www.programiz.com/c-programming/c-for-loop

The while loop evaluates the test expression.

If the test expression is true (nonzero), codes inside the body of while loop is executed.

The test expression is evaluated again. The process goes on until the test expression is

false.

When the test expression is false, the while loop is terminated.

Flowchart of while loop

Example 1: while loop

// Program to find factorial of a number
// For a positive integer n, factorial = 1*2*3...n

#include <stdio.h>
int main()
{
 int number;
 long long factorial;

 printf("Enter an integer: ");
 scanf("%d",&number);

 factorial = 1;

 // loop terminates when number is less than or equal to 0
 while (number > 0)
 {
 factorial *= number; // factorial = factorial*number;
 --number;

}

 }

 printf("Factorial= %lld", factorial);

 return 0;
}

Output

Enter an integer: 5
Factorial = 120

To learn more on test expression (when test expression is evaluated to nonzero (true)

and 0 (false)), check out relational and logical operators.

do...while loop

The do..while loop is similar to the while loop with one important di�erence. The

body of do...while loop is executed once, before checking the test expression. Hence,

the do...while loop is executed at least once.

do...while loop Syntax

do
{
 // codes
}
while (testExpression);

How do...while loop works?

The code block (loop body) inside the braces is executed once.

Then, the test expression is evaluated. If the test expression is true, the loop body is

executed again. This process goes on until the test expression is evaluated to 0 (false).

When the test expression is false (nonzero), the do...while loop is terminated.

Flowchart of do...while Loop

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

Example 2: do...while loop

// Program to add numbers until user enters zero

#include <stdio.h>
int main()
{
 double number, sum = 0;

 // body of loop is executed at least once
 do
 {
 printf("Enter a number: ");
 scanf("%lf", &number);
 sum += number;
 }
 while(number != 0.0);

 printf("Sum = %.2lf",sum);

 return 0;
}

Output

Enter a number: 1.5
Enter a number: 2.4
Enter a number: -3.4
Enter a number: 4.2
Enter a number: 0
Sum = 4.70

To learn more on test expression (when test expression is evaluated to nonzero (true)

and 0 (false)), check out relational and logical operators.

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

C Programming break and continue Statement

The break statement terminates the loop, whereas continue statement forces the

next iteration of the loop. In this tutorial, you will learn to use break and continue

with the help of examples.

Table of Contents

break statement

How break statement works?

Example: break statement

continue statement

How continue statement works?

Example: continue statement

It is sometimes desirable to skip some statements inside the loop or terminate the loop

immediately without checking the test expression.

In such cases, break and continue statements are used.

break Statement

The break statement terminates the loop (for, while and do...while loop) immediately

when it is encountered. Its syntax is:

break;

The break statement is almost always used with if...else statement inside the loop.

How break statement works?

https://www.programiz.com/c-programming/c-for-loop
https://www.programiz.com/c-programming/c-do-while-loops
https://www.programiz.com/c-programming/c-if-else-statement

Example 1: break statement

Output

// Program to calculate the sum of maximum of 10 numbers
// If negative number is entered, loop terminates and sum is displayed

include <stdio.h>
int main()
{
 int i;
 double number, sum = 0.0;

 for(i=1; i <= 10; ++i)
 {
 printf("Enter a n%d: ",i);
 scanf("%lf",&number);

 // If user enters negative number, loop is terminated
 if(number < 0.0)
 {
 break;
 }

 sum += number; // sum = sum + number;
 }

 printf("Sum = %.2lf",sum);

 return 0;
}

Enter a n1: 2.4
Enter a n2: 4.5
Enter a n3: 3.4
Enter a n4: -3
Sum = 10.30

This program calculates the sum of maximum of 10 numbers. Why maximum of 10

numbers? It's because if the user enters negative number, the break statement is

executed which terminates the for loop, and sum is displayed.

In C, break is also used with switch statement.

continue Statement

The continue statement skips statements after it inside the loop. Its syntax is:

continue;

The continue statement is almost always used with if...else statement.

How continue statement works?

https://www.programiz.com/c-programming/c-switch-case-statement

Example 2: continue statement

// Program to calculate sum of maximum of 10 numbers
// Negative numbers are skipped from calculation

include <stdio.h>
int main()
{
 int i;
 double number, sum = 0.0;

 for(i=1; i <= 10; ++i)
 {
 printf("Enter a n%d: ",i);
 scanf("%lf",&number);

 if(number < 0.0)
 {
 continue;
 }

 sum += number; // sum = sum + number;
 }

 printf("Sum = %.2lf",sum);

 return 0;
}

Output

Enter a n1: 1.1
Enter a n2: 2.2
Enter a n3: 5.5
Enter a n4: 4.4
Enter a n5: -3.4
Enter a n6: -45.5
Enter a n7: 34.5
Enter a n8: -4.2
Enter a n9: -1000
Enter a n10: 12
Sum = 59.70

In the program, when the user enters positive number, the sum is calculated using sum
+= number; statement.

When the user enters negative number, the continue statement is executed and skips

the negative number from calculation.

C switch...case Statement

In this tutorial, you will learn to write a switch statement in C programming (with an
example).

Table of Contents

C switch statement
Syntax of switch
switch statement �owchart
Example: switch statement

The if..else..if ladder allows you to execute a block code among many alternatives.
If you are checking on the value of a single variable in if...else...if , it is better to
use switch statement.

The switch statement is often faster than nested if...else (not always). Also, the
syntax of switch statement is cleaner and easy to understand.

Syntax of switch...case

switch (n)
 {
 case constant1:
 // code to be executed if n is equal to constant1;

 break;

 case constant2:
 // code to be executed if n is equal to constant2;
 break;
 .
 .
 .
 default:
 // code to be executed if n doesn't match any constant
}

When a case constant is found that matches the switch expression, control of the
program passes to the block of code associated with that case.

Suppose, the value of n is equal to constant2 . The compiler executes the statements
after case constant2: until break is encountered. When break statement is
encountered, switch statement terminates.

switch Statement Flowchart

Example: switch Statement

Output

Enter an operator (+, -, *,): -
Enter two operands: 32.5
12.4
32.5 - 12.4 = 20.1

The - operator entered by the user is stored in operator variable. And, two operands
32.5 and 12.4 are stored in variables firstNumber and secondNumber respectively.

Then, control of the program jumps to

// Program to create a simple calculator
#include <stdio.h>

int main() {

 char operator;
 double firstNumber,secondNumber;

 printf("Enter an operator (+, -, *, /): ");
 scanf("%c", &operator);

 printf("Enter two operands: ");
 scanf("%lf %lf",&firstNumber, &secondNumber);

 switch(operator)
 {
 case '+':
 printf("%.1lf + %.1lf = %.1lf",firstNumber, secondNumber,
 break;

 case '-':
 printf("%.1lf - %.1lf = %.1lf",firstNumber, secondNumber,
 break;

 case '*':
 printf("%.1lf * %.1lf = %.1lf",firstNumber, secondNumber,
 break;

 case '/':
 printf("%.1lf / %.1lf = %.1lf",firstNumber, secondNumber,
 break;

 // operator doesn't match any case constant (+, -, *, /)
 default:
 printf("Error! operator is not correct");
 }

printf("%.1lf / %.1lf = %.1lf",firstNumber, secondNumber, firstNumber/firs

Finally, the break statement terminates the switch statement.

https://www.programiz.com/c-programming/c-break-continue-statement

C goto Statement

In this tutorial, you will learn to create goto statement in C programming. Also, you
will learn when to use a goto statement and when not to use it.

Table of Contents

Syntax of goto
Example: goto statement
Reasons to avoid goto
Should you use goto statement?

The goto statement is used to alter the normal sequence of a C program.

Syntax of goto statement

goto label;
...
...
...
label:
statement;

The label is an identi�er. When goto statement is encountered, control of the program
jumps to label: and starts executing the code.

Example: goto Statement

// Program to calculate the sum and average of maximum of 5 numbers
// If user enters negative number, the sum and average of previously ent

include <stdio.h>

int main()
{

 const int maxInput = 5;
 int i;
 double number, average, sum=0.0;

 for(i=1; i<=maxInput; ++i)
 {
 printf("%d. Enter a number: ", i);
 scanf("%lf",&number);

 // If user enters negative number, flow of program moves to label j
 if(number < 0.0)
 goto jump;

 sum += number; // sum = sum+number;
 }

 jump:

https://www.programiz.com/c-programming/c-keywords-identifier

Output

1. Enter a number: 3
2. Enter a number: 4.3
3. Enter a number: 9.3
4. Enter a number: -2.9
Sum = 16.60

Reasons to avoid goto statement

The use of goto statement may lead to code that is buggy and hard to follow. For
example:

one:
for (i = 0; i < number; ++i)
{
 test += i;
 goto two;
}
two:
if (test > 5) {
 goto three;
}
...

Also, goto statement allows you to do bad stu� such as jump out of scope.

That being said, goto statement can be useful sometimes. For example: to break from
nested loops.

Should you use goto statement?

If you think the use of goto statement simpli�es your program. By all means use it. The
goal here is to create code that your fellow programmers can understand easily.

 average=sum/(i-1);
 printf("Sum = %.2f\n", sum);
 printf("Average = %.2f", average);

 return 0;
}

